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Minimal filling curve
Filling curve with the minimum self intersection number 
on a given surface.

● Exists!
● This is sort of the 

 simplest example 
 on a surface.
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Start with a (minimal) filling curve γ0

Cut at an intersection point with a 
separating curve. 

Given a pair of positive
integers (m, n) , let γ be the curve ηm ∗ γ0

n

(based at the intersection point)

A (2,2) curve.
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Are these different?

For every n, m we get a curve.
Are the different types? 
How can we tell?

A first guess…
Self -Intersection number

Yes! But there are curves with 
same self-intersection 
number within the family 

i(γ, γ) = i(γ0, γ0)n
2 + (i(γ0, η)n − 1)m

Solve for k



A better invariant…
For (𝞍,X ) in Teich(𝚺) . Let  lᵧ(X) denote the ‘X-length’ of the 
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We define the length infimum of  γ as follows:

mᵧ = inf { lᵧ(X) :  (𝞍, X ) in Teich(𝚺)}
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geodesic in the free homotopy class of  𝞍(γ).

We define the length infimum of  γ as follows:

mᵧ = inf { lᵧ(X) :  (𝞍, X ) in Teich(𝚺)}

OR,
For every hyperbolic metric measure length of curve and 
make a list and take the smallest of the list!

! Realized uniquely and 
is a MCG invariant
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Both have same intersection number (k) ;( 

mαk ≲ log k 

√k ≲ mβk

So these are of different 
topological types!



Theorem (ish):

For any finite type surface and any choice of natural number 
k (some minor restrictions), 
Can build curves with same intersection numbers (k) but of 
different infimum length and as a result topological types.
….and some more info on the inf metrics.

Joint work with A. Basmajian
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